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Bayesian computational methods

By Apriax F. M. SmiTH

Department of Mathematics, Imperial College of Science, Technology and Medicine,
London SW7 2BZ, UK.

g The bayesian (or integrated likelihood) approach to statistical modelling and
« analysis proceeds by representing all uncertainties in the form of probability
distributions. Learning from new data is accomplished by application of Bayes’s
Theorem, the latter providing a joint probability description of uncertainty for all
model unknowns. To pass from this joint probability distribution to a collection of
marginal summary inferences for specified interesting individual (or subsets of)
unknowns, requires appropriate integration of the joint distribution. In all but
simple stylized problems, these (typically high-dimensional) integrations will have to
be performed numerically. This need for efficient simultaneous calculation of
potentially many numerical integrals poses novel computational problems. De-
velopments over the past decade are reviewed, including adaptive quadrature,
adaptive Monte Carlo, and a variant of a Markov chain simulation procedure known
as the Gibbs sampler.
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The bayesian (or integrated likelihood) approach to statistical modelling proceeds by
specifying a probability model, p(x|6), for data realizations, x, together with an
a priort (prior) probability weighting distribution, p(68), for possible values of the
unknown model parameters, 6. Statistical analysis (i.e. making inferences about
unknown parameters, or predicting future data values) is then based on p(6|z), the
a posteriori (posterior) uncertainty distribution for unknown parameters (conditional
on observed data), given by Bayes’s Theorem,

p(0]2) = p(xw)p(evfp(xle)p(e) a6, (L.1)

and the (predictive) uncertainty distribution for future data y generated by p(y|6)
is given by
plyle) = fp(ylﬁ)p(ﬁlx) de.

In formal terms, this bayesian inference prescription is deceptively simple: we just
specify p(z|6) (usually referred to as the likelihood, /(6;x), when considered as a
function of ) and p(#), multiply the likelihood and prior probability functions
together and normalize to form the posterior probability function.

From this joint posterior density over all unknown model parameters, by standard
probability marginalization and transformation techniques we can straightforwardly
obtain any particular univariate or bivariate, etc., summary in the form of densities,
contours or moments as required.

However, calculation of the joint density for @, together with the required
marginalization and moment summaries, rests on an ability to perform a number of
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370 A. F. M. Smith

(typically high-dimensional) integrations. In particular, it is necessary to find the
normalizing constant of the full joint density and to eliminate complementary
components of 8, or transformations of #, to obtain marginal densities or marginal
moment summaries. The technical problem of carrying out a bayesian analysis
therefore reduces to that of performing or approximating a number of (typically
high-dimensional) numerical integrals.

In practice, the mathematical forms of [(#;x) and/or p(d) make this process far
from trivial, as we shall try to indicate by the following brief comments on a range
of models and applications.

(@) Image analysis

Problems of image analysis, reconstruction, edge and feature detection, etc., arise
throughout the sciences, medicine and technology. In these contexts, ¢ is the
unknown true image, the #-vector components being the true individual pixel values.
The data vector z is the observed (noisy) image, with p(x|6) describing the noise
process and taking characteristically different forms (often the result of an intricate
modelling process) in different application areas. The prior specification p(6)
characterizes (aspects of) the underlying true image and could take the form of a
detailed probabilistic template, or a stylized statement about local correlation.
Clearly, challenging computational problems arise, the dimension of 6 often being of
the order of 256 x 256 (and perhaps even 1000 x 1000).

(b) Mixture analysis

Titterington et al. (1986) detail numerous application areas where the data model,
p(x]6), is a weighed linear combination (a finite mixture) of component models.
Thus, for example, x may be observed fish length, from a given species, and the
component models correspond to length distributions at different fish ages. The
unknown mixture weights are the proportions of different age groups in the
underlying fish population; the unknown parameters of the component models
characterize mean size and variability at different ages. Here, the prior specification,
p(0), needs to describe the relationships among these latter parameters, as well as
information on age distribution. In the case of fisheries research, inference may focus
on the mixture proportions; in other applications of mixtures, interest may focus on
the component model parameters, or on deciding the number of components.
Computational problems in mixture analysis arise both from potentially high
dimensionality of 8 (for example, a 12-component bivariate gaussian mixture has 71
unknown parameters) and the notoriously complex form of the likelihood function.

(¢) Change-point analysis

Change-point models arise when a mechanism or structure (e.g. biological,
economic or social) is characterized by periods of stability (although subject to
statistical variability), but with sudden shifts from one stable form to another.
Examples are provided by growth phases in biology, shifts in economic behaviour,
archaeological phases corresponding to abandonment and resettlement of sites, and
changes in clinical conditions, such as alternating periods of rejection and recovery
in organ transplantation. The data model, p(z|6), has components for cach stable
phase, with 0 representing parameters for each component, as well as the unknown
change-points (which, typically, refer to time). The prior specification needs to
represent information about the change mechanism, as well as relationships among

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/\
/ \\
e\
L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
a\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Bayesian computational methods 371

parameters within and between phases. Again, dimensionality quickly becomes a
problem (for example, a heteroscedastic segmented multiple regression with 10
regressors and up to five phases has at least 64 unknown parameters) and there are
often awkward parametric constraints (for example, if segmented response curves
are assumed continuous at change-points). In many applications, inference focuses
on the change-points themselves. In some cases, for example economic forecasting,
interest may focus on inference or prediction based just on the identified final data
régime.
(d) Hierarchical analysis

Hierarchical models, often referred to under the label of Empirical Bayes models,
arise as follows. The data model, p(x|6), is a combination of data models, p,(x;|6,),
from a number of separate contexts, and p(f) has the structure

p(6) = f 2(616) plg) dg,

where p(6]¢) is a further layer of modelling describing an assumed relationship
among the 6, (with the ‘hyperparameter’, ¢, functioning as an unknown parameter
in p(@|¢)). Examples include : population modelling in the pharmaceutical sciences,
where the p,(x;| 6;) model drug concentration profiles for individuals ¢, having kinetic
and measurement noise parameters 6,, with p(f) modelling the variability of
individual kinetic parameters in the population, as well as information about
measurement noise; spatial modelling in epidemiology, where the p,(«;|6,) model
disease incidence rates in different locations, with p(6) modelling the spatial and
other variability of underlying factors. Dimensionality again becomes a problem : for
example, if drug concentration profiles for 50 individuals are modelled by a four-
parameter function with additive gaussian noise, the combined vector of unknowns
(6,¢) may be 264-dimensional (even more if models are extended to deal with
potential outliers or the need for data transformation). In many applications,
interest focuses on the population characteristics, described by ¢. In other cases, the
individual @, (or predictions for individuals or locations) are of equal interest.

This brief summary of a selection of typical problem areas in which bayesian
modelling and analysis is used serves, we hope, to indicate and illustrate the very real
computational challenges posed by the dimensionality and complexity arising from
realistic forms of p(x|#) and p(#). The remainder of this paper presents a review of
some of the approaches developed over the past decade in response to these
computational challenges.

In §2, we review various analytic approximation strategies that have been
proposed. In §3, we outline the ways in which a bayesian response to the problem of
simultaneously performing a number of high-dimensional numerical integrals
suggests novel iterative, adaptive strategies based on mixes of cartesian product,
spherical and importance sampling quadrature techniques. In §4, we outline recent
ideas based on sampling and resampling strategies. In §5, we provide a brief
comparative overview of the various techniques reviewed.

2. Analytic approximation
For completeness, we begin with a brief review of familiar analytic approaches to
approximating posterior inference summaries.

Phil. Trans. R. Soc. Lond. A (1991)
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372 A. F. M. Smith

(@) The assumption of asymptotic normality

If In {(z;0) is denoted by L(0), suppressing the dependence on the given data x,
it is well known that, for large sample sizes, the posterior distribution of 8 is often
approximately NG, Z ), where 6 is the maximum likelihood estimate and 2 is the
inverse of the hessian matrix evaluated at 6.

This approach has the powerful advantage that practically all forms of summary
posterior inference are trivially calculated as by-products of the normality
assumption. Moreover, computer programs are readily available for calculating 6 and
X indeed, apart from differences in philosophical approach and interpretation, these
latter quantities are precisely those widely used as the basis for summary inferences
by proponents of likelihood inference.

However, there is a major problem with this strategy and one that receives far too
little attention in practice, namely, how to check, in any specific application, that the
assumption of approximate normality is really justified.

(b) Lindley’s approximations
Lindley (1980) develops specific expansions to order n~ ! for ratios of integrals of
the form

Jw(ﬁ) l(z;0) d@/j v(0)l(x;0)d0. (2.1)
Thus, for example with w(0) = g(0) p(0),v(0) = p(0), p(0) = In p(d), Lindley shows
that
& IJC ~g+ E(gz;-'-zgzpz) o-zy+2 E Lzymgl ml> (22)
i,J,l,m

where subscripts on g, p and L denote differentiation with respect to specific
components of 0, with all functions evaluated at 6 = 6, and the o are the elements
of 2.

Lindley’s expansions provide, in a sense, first-order corrections to the maximum
likelihood approximations which incorporate some influence from the prior
distribution. Unfortunately, however, the approximations require the evaluations of
up to third-order derivatives, a task which quickly becomes irksome as the
parameter dimension k increases.

(¢) The Laplace approximation

More recently, Tierney & Kadane (1986) proposed a form of analytic
approximation, which requires the evaluation of only first and second derivatives
of slightly modified likelihood functions. The basic idea is to apply separately the
Laplace method for integrals to both the numerator and denominator in (2.1). We
can illustrate the method by considering again the special case w(f) = g(6) p(6),
v(0) = p(0), for positive g(-). We take

M(0) = 0 (L(0)+1n p(0)) = M) — (0—010)*/ (20%,), (2.3)
where 0,, maximizes M(0) and ¢}, is minus the inverse of the second derivative of
M(-) evaluated at 0,,, and then approximate the denominator of (2.1) by

Jl(x;@)p(@) do = fe"M“’) dO ~ v/ (2n) oy n 7t exp {nM(éM)}. (2.4)

To approximate the numerator, we take
N(O) = n~"{In g(0) + L(0) + In p(6)}
Phil. Trans. R. Soc. Lond. A (1991)
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and evaluate the maximum 6 ~ of N(6), together with %, which is equal to minus
twice the second derivative of N(-) evaluated at 6, obtaining

fgw) (:6) p(0) A0 = /(2m) oy -} exp (NG (2.5)

From (2.4) and (2.5) we obtain the approximation
E[g(0)|2] % (7/0,) exp (n[N(6x) = M(6y)T) (2.6)

which has relative error of order n 2 and seems to be more accurate than

conventional approximations for a range of problems.

The above developments have obvious direct application to the calculation of
posterior moments and predictive densities. In addition, Tierney & Kadane extend
these ideas to multiparameter situations and employ Laplace’s method to perform
the approximate integration of subsets of components of the parameter vector from
the overall joint posterior density in order to obtain marginal joint posterior
densities. Recent extensions and refinements of the methodology include Kass et al.
(1989) and Tierney et al. (1989). An alternative analytic approximation technique is
discussed by Leonard et al. (1989).

3. Numerical integration
(a) Background

As noted in Naylor & Smith (1982), the numerical calculation and marginalization
of p(@|x), as given in (1.1) above, involves the computation of integrals of the form

S,[(6)] = f 2(6)1(:0) p(6) d6,., (3.1)

where, if 6,,..., 6, denote the components of ¢, I is some index set [ = {1,..., k} and
6,,, denotes the vector of components of & whose subscripts are not elements of /.
Thus for example, I = &, ¢q(6) = 1 corresponds to the normalizing constant in (1.1),
S;[1]/841] corresponds to the marginal posterior density ordinate p(6;|x), and
S0,6;1/85[1] corresponds to the posterior expectation of 6,6, Other moments
and predictive densities, etc., are similarly obtained from integrals having the form
(3.1).

In the case of the k-dimensional integrals,

S[a(6)] = f 2(0) (a3 0) p(6) 6, (3.2)

it is well known that efficient quadrature formulae are available if the integrand in
(3.2) can be well approximated by a function of the form

g9(0) = hO)n(0;¢,2), (3.3)

where n(6; ¢, X) denotes a k-dimensional normal density, with known mean ¢ and
known covariance matrix 2, and A(6) is a polynomial in the components of 6. In such
cases, a constructive orthogonalizing and centring and scaling transformation of the

form
‘ﬁl = 01}
i-1
Vi =0+ 2 Pyt =2,k (3.4)
j=1

Phil. Trans. R. Soc. Lond. A (1991)
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374 A.F. M. Smith
Wlth /))7;]‘ = —cCcov (01» lﬁj |.’L’)/V&I‘ (¢-j | x)a
followed by £ = (hi—m)/(V20), (3.5)

where u,, 2 are the means and variances of the i, leads to the standardized form

fg(ﬁ)dﬁ = Jh*(é) exp {—(&+... +£)1dE, (3.6)

where A*(£) is a polynomial in the components of &.

The class of functions which can be well approximated by polynomial X normal
forms is, in fact, rather rich and covers many of the S,[q(6)] integrands we typically
encounter, provided the individual parameter components have support (— oo, c0).
In many problems this is, of course, not the case since the likelihood involves
variance components or proportions defined in the interval (0,1), or whatever.
However, the range of application of the normal x polynomial approximation is
greatly extended by, in such cases, redefining the likelihood and prior in terms of
transformed individual components: for example, by working with the logarithms
of variance components and the logits of proportions. Visual evidence of the
effectiveness of such transformations is provided in Smith et al. (1985, 1987), and
such individual parameter transformations are a key feature of the strategies to be
described later.

(b) Parametrization issues

A diagnostic plot for assessing approximate marginal posterior normality and
suggesting effective reparametrization can be developed as follows. Let p(0|x) denote
the joint posterior density, with a mode at 0 = (6,,...,0,,), and let p](ﬁ | ) denote the
profile posterior for 0, defined by maximizing p(@|x) over 6,1 # j, for each 6,. A
diagnostic proposed by Hills & Smith (1991 a, b) is then to plot 7'(6;) against 6, Where

1(0)) = sgn (0;—0;) {—2[In py(0;]x)—In p(@|x) .
To motivate this procedure, consider the case of p = 1. If p(8|x) is actually normal,
we have P(O12) = pB] ) exp {—(1/20%) (6— )2,
for some o®, from which it follows immediately that 7(0) is linear in 6. In general, a
Taylor expansion gives
In p(f|z) = lnp@lx +1H(0— 6) +0[(0— (9)]
where H is the second derivative of In p(0|z) evaluated at 6. 1t follows that
T(0) = (0~0)[ —H—20[(0—0)")/(0—0)*}.

The first term in the square root expression is observed Fisher information (and
does not depend on ). If this term is large, it will dominate and 7'(6) will be
approximately linear in 6 (the ‘large sample’ case). Departure from linearity will
then indicate the importance of the cubic term.

This ‘7'(0) against 6’ diagnostic plot (which we shall refer to as the Bayes ¢-plot) is
discussed in detail in Hills & Smith (1991, 1992) where the behaviour of the diagnostic
plot is studied for various stylized cases. As an example, suppose that in fact In (6 —¢)
were distributed as N(u, 0%). In this case, it can be shown that

7(0) = o {In (0 —¢)— (p—o)],
which has an asymptote at 6 = ¢.

Phil. Trans. R. Soc. Lond. A (1991)
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Based on this and other theoretical forms of 7'(0) against 0, ‘look-up’ rules can be
established (see Hills & Smith (1991) for detailed derivations and illustration). In
practice, accuracy of choices of constants (such as ¢ in the above) is not critical.
In any case, a second diagnostic check can be carried out for the suggested
reparametrization.

More specific forms of reparametrization strategy may be suggested by particular
statistical model classes. Consider, for example the autoregressive moving average
processes, an ARMA (p,q) being specified by ¢(B)y, = 0(B)¢,, where y, denotes an
observation at time ¢, ¢, denotes white noise, B is the backward shift operator, B*y,
=Y o 9pB)=1—¢B—¢,B*—...—¢, B and 0B)=1-0,B—-0,B>—...—0,B".
For stationarity, the roots of ¢(B) =0 must lie outside the unit circle; for
invertibility (to ensure a unique model corresponding to the likelihood) the roots of
0(B) = 0 must lie outside the unit circle. These conditions induce a constraint region,
C,xC,, for the model parameters (¢, 0), where ¢ = (¢,,...,¢,), 0 = (0,,...,0,).

To motivate a suitable reparametrization in this case, first recall that a polynomial
in x, with real coefficients,

m

2
l—71je—T10°— ... —7, 2™,

can be factorized as

=Y

_ _ 2
(1—a,;x—aya®) for meven,

I
—

J
(m—1)
(1—ayx) II (1—ayx—ayx®) for modd,
j=1

where the a are also real. When the polynomial corresponds to ¢(B) or 6(B), the
condition that (¢, 0) lies in U, x C, is satisfied by ensuring that each point (a,;, a,;) lies
in the triangle |ay| <1, |ay,| <1—a,;, with |a,| <1 if p or ¢ is odd. A suitable
reparametrization is then achieved by setting

a¥ =1In Lty , af=In Ly ,
L —ay—ay; 1—a,,

with af =In [(1+a,)/(1—a,)] if p or ¢ is odd. For further details (and discussion of
the many-to-one problem in passing from the 7 to the a) see Marriott & Smith (1991).
After performing individual component transformations of the kind discussed
above, the remaining problem of carrying out the linear transformations described
in §3a is that the £, u; and o, are not known. The strategies now to be described
approach this problem by a form of statistical sequential learning process.

(¢) An iterative product rule strateqy

The polynomial A*(§), assumed to be of order d, say, appearing in the standardized
form (3.6) can always be written as a linear combination of monomials of the form

£ B,
where a;+...+a, <dand a; = 0fors = 1,..., k. The required integral is thus a linear

combination of products of the form

k o0
I1 §rexp (—§&7)dg;.

i=1J —w0

Phil. Trans. R. Soc. Lond. A (1991)
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The component integrals in this product are well-approximated by classical
Gauss—Hermite quadrature rules, which have the general form

j ft) exp (—1?) dt~2w1f

where w; = 2" tnly/n/{n?[H, (t,)]*},

and t; is the ith zero of the Hermite polynomial H ,(¢) (see, for example, Davis &
Rabinowitz 1984).

This motivates the approximation of the original integral (3.2) by a cartesian
product rule, which takes a weighted average of the integrand values at the
intersection points of the k-dimensional grid corresponding to the Hermite zeros in
each direction, with weights equal to the product of the corresponding weights. The
numbers of zeros used (i.e. the choices of n in the Gauss—Hermite rule) can of course
be different in the different directions. As a result of the polynomial x normal
underlying assumption, following individual parameter component transformation,
and provided the grids are chosen large enough, the same zeros and weights will serve
to calculate normalizing constants, marginal density values and moments. This is a
key feature of the approach, leading to considerable gains in efficiency.

However, as we remarked earlier, the f,;, #; and o; implicit in the transformations
motivating this approximation are unknown. We therefore proceed as follows, by an
iterative, adaptive technique. We begin with small grids based on, say, four points
in each direction, and initial estimates (possibly based on maximum likelihood) of the
mean and covariance matrix of the posterior distribution (which imply estimates of
Bij» i and o). Based on these estimates, we perform cartesian product rule integrals,
using the implied grid and weights, to obtain new estimates of the first and second
moments of the posterior distribution and hence improved estimates of 4, u; and ;.
This process is then iterated. The successive u; and o, control the centring and scaling
of the grids; the f;; control the orientation.

The general iterative Gauss—Hermite quadrature strategy may therefore be
described as follows.

(i) Reparametrize individual parameters so that the resulting working parameters
all take values on the real line.

(ii) Using initial estimates of the joint posterior mean vector and covariance
matrix for the working parameters, transform further to a centred, scaled, more
‘orthogonal’ set of parameters.

(iii) Using the derived initial location and scale estimates for these ‘orthogonal’
parameters, perform cartesian product integration of functions of interest using
suitably dimensioned grids.

(iv) Iterate, successively updating the mean and covariance estimates, until stable
results are obtained both within and between grids of specified dimension.

The ‘convergence’ criterion implicit in (iv) above is, frankly, pragmatic in nature,
and complete mathematical treatment of this iterative quadrature strategy seems
very difficult. Since the algorithm is driven by up-dating of the first and second
moment parameters of the gaussian kernel, the process can be viewed as a nonlinear
iterative map on this moment space. Studv of convergence thus reduces to the study
of the behaviour of this nonlinear map. Some progress is reported in Shaw (1988a),
who exhibits cases in which unique fixed points exist, but also cases with period
cycling and even chaotic behaviour.

Phil. Trans. R. Soc. Lond. A (1991)
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Table 1. Comparison of points required for product and spherical rules

parameter  degree 5  three-grid  degree 7 four-grid
dimension  spherical product spherical product

k (2 +2k) 3" (2541 +42) 4r

3 14 27 52 64
4 24 81 96 256
5 42 243 164 1024
6 76 729 272 4096
7 142 2187 452 16384
8 272 6561 768 65536
9 530 19683 1348 262 144

(d) An iterative spherical rule strategqy

The problem with the product rule strategy outlined above is that above five or six
dimensions it quickly becomes prohibitively expensive in terms of numbers of
integrand calculations required, even for small grids: for example, a 4° grid requires
4096 evaluations and a 47 grid requires 16384 evaluations. In practice, we may need
seven- or eight-point rules in many directions to achieve convergence, and this
clearly precludes the routine use of product rules in high dimensions.

However, considerable gains in efficiency can be obtained by transforming to a
spherical polar coordinate system and constructing optimal integration formulae
based on symmetric configurations over concentric spheres. Such rules, discussed in
detail in Stroud (1971, §§2.6, 2.7), are based on the observation that, if we make the
transformation from £ to ¥, where

£, =17 COS Yy COS Yy y...CO8 Yy COS Yy,
£, =7 COS Yy_y COS Yy y...COS Yy SIN Yy,
£, =171 cos iry_; COS Yy y...SiN Yy, (3.7)

Ee=rsiny_,,
then the integral (3.6) becomes a product of integrals of the form

T

(cos ;)% (sin )l dypy, j=1,...,k—1,

and J (r*)¢ exp (—r?)dr,

0

for some a;,b;,c. The resultlng optimal rules then take the form of a product of a
Gauss—Laguerre rule for 72, together with symmetric configurations on the spherical
surfaces.

A rule which will integrate a (polynomial of degree d)x (multivariate normal)
integrand exactly is called a ‘degree d’ rule. Table 1 compares the numbers of points
required for optimal degree 5 and dcgree 7 product rules and spherical rules,
respectively. The spherical rules are given in Stroud (1971); the product rules are the
3% and 4% Gauss—Hermite cartesian product rules.

It is clear from table 1 that spherical rules offer tremendous potential for efficient
integration in the range of 4 < k& < 9, where the product grid strategy becomes too

expensive.
Phil. Trans. R. Soc. Lond. A (1991)
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(e) An iterative importance sampling strategy

The importance sampling approach to numerical integration is based on the
observation that, if f and ¢ are density functions,

Jf(x) de = J{f(x)/g(x)] g(x)de = f[f(%)/g(x)] dG(x)

= Eq[f(X)/9(X)],

say, which suggests the ‘statistical’ approach of generating a sample from the
distribution ¢ and using the average of the values of the ratio f/g as an unbiased
estimator of [ f(x)dx. However, the variance of such an estimator clearly depends
critically on the choice of @, it being desirable to choose g to be ‘similar’ to f.

In the univariate case, if we choose ¢ to be heavier-tailed than fand if we work with
Y = g(X), the required integral is the expected value of f[G~1(X)]/g[G~(X)] with
respect to a uniform distribution on the interval (0, 1). The resulting periodic nature
of the ratio function over this interval then suggests that we are likely to get a
reasonable approximation to the integral by generating ‘uniformly distributed’
random numbers. If f is a function of more than one argument (k, say), an exactly
parallel argument suggests that the choice of a suitable g followed by the use of a
suitably ‘uniform’ configuration of points in the k-dimensional unit hypercube will
prove an acceptable alternative to the ‘costly’ procedure of generating ‘random’
uniformly distributed points in k-dimensions.

However, the effectiveness of all this depends on choosing a suitable @, bearing in
mind that we need to have available a flexible set of possible distributional shapes,
for which ! is available explicitly.

A suitable class of univariate distributions for importance sampling (due to Shaw
1988a) can be developed as follows.

Let U denote a uniform U(0, 1) random variable and let A denote a monotonic
increasing function defined on the interval (0, 1), such that A(u) —+— oo as u— 0. Now
define a family of random variables by

X, =Ah(u)+ (1 —A4) (1 —u),

where 0 <4 < 1. Clearly, 4 =} defines a random variable with a symmetric
distribution; as 4 -0 or A >1 we obtain increasingly skewed distributions (in
opposite directions). The tail behaviour of the distribution is governed by the choice
of the function A.

Among interesting choices of the latter, we note: k(u) = —[ —In (u)]*, k > 0, which
gives the logistic distribution for k£ =1, 4 =1 and the exponential distribution for
k=1, A=0; h(u) =—tan [jn(l —u)], whose symmetric member (4 =3) is the
Cauchy distribution; A(u) = 1 —u™*, k > 0, which generalizes members of the Tukey-
A family of distributions.

If G¢4,9, denote, respectively, the distribution and density functions of X ,, we
have:

) = x, = Ah(u)+ (L= A) WL —u),  g,(@) = C)(a).

If K ,, k, denote the corresponding forms of G, ¢, in terms of u, we have
K, (u) = G (G u) = [AW (w)+ (1—A) K (1 —u)]L.
These forms guide the choices of & for which the corresponding importance
Phil. Trans. R. Soc. Lond. A (1991)
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sampling density is easy to use. Moreover, the moments of these families of
distributions are polynomials in 4 (of corresponding order), the median is linear in
A, and so on, so that sample information about such quantities provides (for any
given choice of k) operational guidance about the appropriate choice of A4.

In addition, the strategy requires the specification of ‘uniform’ configurations of
points in the k-dimensional unit hypercube, a problem which has been extensively
studied by number theorists. Systematic experimentation with various suggested
forms of ‘quasi-random’ sequences has identified effective forms of configuration for
importance sampling purposes. Based on measures of ‘good lattice structure’
motivated by the need for efficient calculation of (lower-dimensional) joint densities,
Shaw (1988b) presents detailed comparison of a number of rational, irrational and
irregular quasi-random sequence approaches to generating a configuration in the
hypercube. For mathematical details, see Shaw (19885).

If we combine the importance sampling and quasi-random ideas, the resulting
general strategy is the following.

(i) Reparametrize individual parameters so that the resulting working parameters
all take values on the real line.

(ii) Using initial estimates of the joint posterior mean vector and covariance
matrix for the working parameters, transform further to a centred, scaled, more
‘orthogonal ’ set of parameters.

(iii) In terms of these transformed parameters, set

for ‘suitable’ choices of ¢,j =1,... k.

(iv) use the inverse cumulative distribution function transformation to reduce the
problem to that of calculating an average over a ‘suitable’ uniform configuration
(quasi-random sequence) in the k-dimensional hypercube.

(v) Use information from this ‘sample’ to learn about skewness, tailweight, etc.,
for each j=1,...,k and hence choose ‘better’ g;,j=1,...,k, as well as revising
estimates of the mean vector and covariance matrix.

(vi) Iterate until the sample variance of replicate estimates of the integral value is
sufficiently small.

A variant of this strategy, which can be more effective if the standardized posterior
density is approximately spherically symmetric, is to transform the quasi-random
random configuration in the hypercube to a configuration on a spherical surface. See
Shaw (1988«) for details.

In implementing these various quadrature and Monte Carlo techniques, it is often
convenient to work with hybrid schemes. For example, combining a product rule for
parameters of interest with a Monte Carlo rule for nuisance parameters, in order to
facilitate eventual inference summaries, graphics, etc., for the parameters of interest.

Of course, all the above ideas can be combined with standard techniques of
variance reduction, such as the use of antithetic variates: see, for example, Geweke
(1988), with further ideas on useful importance sampling families illustrated in
Geweke (1989).

Phil. Trans. R. Soc. Lond. A (1991)
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4, Tterated sampling and resampling approaches

In the sequel, densities will be denoted, generically, by square brackets so that
joint, conditional and marginal forms appear as [X, Y], [X| Y] and [Y]. The usual
marginalization by integration procedure will be denoted by forms such as [X] =
[X] YTH Y],

(@) Substitution sampling

The substitution algorithm for finding fixed point solutions to certain classes of
integral equations is a standard mathematical tool. Thus, for example, if X, Y, Z are
random variables, so that, in the above notation

X = f X, 2| YY), [¥]= f X, Y| 2142, [Z)= f Y, 2| X]*(X],
the marginal density [X] of X is the fixed point solution of the equation
[X] = fh(X,X’)*[X'],
where the kernel is given by
hX,X') = J[X,Z| YI*X", Y| Z Y, Z'| X',

a five-fold integral (with respect to X", Y, Y, Z,Z’).

The key idea of the stochastic substitution algorithm (see Tanner & Wong 1987;
Gelfand & Smith 1990) is to estimate [X] by successive stochastic simulation of
random variates, drawn from the conditional distributions in the three above
equations. The algorithm proceeds as follows: draw X© from an arbitrary [X],;
draw YO, ZO from [¥,Z| X©]; draw X©' YO from [X, Y| Z©]; draw XP, ZD from
[X,Z|Y®] and then iterate. After ¢ steps, with m replications of the process, we
obtain (X{?, Y, Z®"), j =1,...,m. An estimate of the marginal density [X] is then
provided by

A rm
[X], = — 2 [X[ Y], Z{P].
m i
In applications to bayesian inference, [X,Y,Z] would denote the posterior
distribution of unknown quantities of interest.

(b) Gibbs sampling

Throughout this section, we shall be dealing with collections of random variables
U, U, ..., Uy, for which it is known that the joint density, [U], U, ..., U,], is uniquely
determined by the full conditional densities [U,| U,,r # s],s = 1,2,..., k. Our interest
is typically in the marginal distributions, [U,],s = 1,2,..., k.

An algorithm for extracting marginal distributions from the full conditional
distributions (in contrast to the form of conditionals used above in substitution
sampling) was formally introduced as the Gibbs sampler in Geman & Geman (1984).
The algorithm requires all the full conditional distributions to be ‘available’ for
sampling, where ‘available’ is taken to mean that, for example, samples of U, can be
generated straightforwardly and efficiently from [U,| U}, r # s], given specified values
of the conditioning variables, U, » # s.

Phil. Trans. R. Soc. Lond. A (1991)
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Gibbs sampling is a markovian updating scheme, which is a variant of the
Metropolis algorithm. See, for example, Hastings (1970) and Peskun (1973) for
seminal ideas on the use of Markov chain simulation algorithms for statistical
problems. The Gibbs sampling algorithm proceeds as follows. Given an arbitrary

starting set of values U\, ..., U®, we draw U from [T, | U, ..., U], then U§ from
(G| UP,UP, ..., U]...and so on up to UP from [U,|UWP,..., UL, ] to complete one
iteration of the scheme. After ¢ such iterations we would arrive at (U?,..., UP).

Geman & Geman show under mild conditions that

d
U9 —U, ~ [U] as t >c0.

Thus, for ¢ large enough we can regard UY as a simulated observation from [U,].

Replicating this process m times produces m independent and identically
distributed k-tuples (U{,...,U{)),j = 1,...,m. For any s, the collection U®,...,U%),
can be viewed as a simulated sample from [U,]. The marginal density could then be
estimated by the finite mixture density.

m

(O] =m S (GG = U, r # 5] (4.1)
j=1

(See Gelfand & Smith (1990) and Gelfand et al. (1990) for further discussion.)

Suppose interest centres on the marginal distribution for a variable V which is a
function g(Uj, ..., ;) of U, ..., Uy. We note that evaluation of g at each of the (U{),...,
U{)) provides samples of V, so that an ordinary kernel density estimate can readily
be calculated.

In the bayesian framework, where U, are unobservable, representing either
parameters or missing data (and V can thus be a function of the parameters in which
we are interested), all distributions will be viewed as conditional on the observed
data, whence marginal distributions become the marginal posteriors needed for
bayesian inference or prediction.

In many applications involving exponential families, some or all of the full
conditionals may be familiar density forms from which sampling is straightforward.
However, while ‘conjugacy ’ simplifies the implementation of the Gibbs sampler it is
not an essential element. In any Bayes model the full conditional distribution of any
parameter is always identifiable from the joint density of the data and the
parameters modulo normalizing constant. Using more sophisticated random variate
generation approaches, such as the ratio of uniforms method (Devroye 1986;
Wakefield ef al. 1992), or methods which exploit features like log-concavity (Gilks &
Wild 1991 ; Dellaportas & Smith 1991), we can sample the arbitrary non-normalized
densities, although, of course, fine tuning of the sampling methodology, including
‘clever’ reparametrization, may be required to avoid highly inefficient random
variate generation.

If the Gibbs sampler is run in order to generate an ‘as if” independent sample from
the joint posterior distribution (rather than simply to form estimates by ergodic
averaging), this can be attempted either by replicate independent ‘short’ runs of the
process or by extracting multiple sample values from a single ‘long’ run of the
process. Output series need to be monitored by a stopping rule (formal or informal)
which decides when ‘convergence’ has been achieved. In the case of replicate runs,
the required. ‘independent’ sample from the posterior is then formed by the final
generated values from the stopped series.

Phil. Trans. RB. Soc. Lond. A (1991)
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The number of iterations to achieve ‘convergence’ is clearly a function of starting
values and the correlation structure of the stochastic process generated by the Gibbs
sampler. To try to get some insight into the importance and effect of such correlation
(and hence into the possible importance of reparametrization to remove it), let us
consider in detail the simple case of two parameters, where the joint posterior is
actually zero-mean, unit-variance bivariate normal with correlation p. If we initialize
the process at 09, say, the conditional distributions which drive the Gibbs sampler are
given by

p(05,1057") = Npt; ' 1—p*),  p(0;107) = N(p0s, L —p?),

from which it follows straightforwardly that the joint distribution of (6%,6%) has
means p21 69, p2 09, variances 1 —p* 2, 1—p* and correlation p[(1—p*)/(1—p*2),
so that the effects of 63 and p on the rate of convergence can easily be examined.

The clear (and intuitive) message is that really high correlations disastrously slow
down the convergence of the Gibbs sampler and that the higher the correlation the
more serious are bad starting values. At the other end of the scale, small correlations
(even of the order of p = 0.8) imply relatively trivial numbers of iterations to
convergence in this simple case, with bad starting values quickly forgotten. Breaking
high correlation can be achieved by means of an application after a few initial
iterations (say, 10-15) of the orthogonalizing transformation defined earlier in §3c.

Complete implementation of the Gibbs sampler requires that a determination of ¢
be made and that, across iterations, choice(s) of m specified. See Gelfand et al. (1990)
for further discussion of convergence issues. See also, Gelfand & Smith (1990) and
Carlin et al. (1991), as well as a discussion of other markovian updating procedures
by Aykroyd & Green (1991).

(c) Resampling

As a first step towards motivating the resampling approach, we note the essential
duality between a sample and the density (distribution) from which it is generated.
Clearly, the density generates the sample; conversely, given a sample we can
approximately recreate the density (as a histogram, an empirical cumulative
distribution function or whatever).

Suppose we now shift the focus in (1.1) from densities to samples. In terms of
densities, the inference process is encapsulated in the updating of the prior density,
p(0), to the posterior density, p(f|«x), through the medium of the likelihood function,
1(0; «). Shifting to samples, this corresponds to the updating of a sample from p(6)
to a sample from p(6]x) through the likelihood function I(0;x).

Generally, suppose that a sample of random variates is easily generated, or has
already been generated, from a continuous density ¢(6), but that what is really
required is a sample from a density #(0) absolutely continuous with respect to g(6).
Can we somehow utilize the sample from ¢(0) to form a sample from %(6)? Slightly
more generally, given a positive function f(¢) which is normalizable to such a density
h(0) = f(0)/[f(0)dE, can we form a sample from the latter given only a sample from
g(6) and the functional form of f(60)?

We may approximately resample from %(0) = f(0)/[f(0)d6 as follows. Given 6,

t=1,...,n, a sample from ¢, calculate w, = f(0,)/¢g(0,) and then

n
=0/ X w;.
j=1
Draw 6* from the discrete distribution over {0,,...,8,} placing mass ¢; on 0,. Then 6*

Phil. Trans. R. Soc. Lond. A (1991)
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is approximately distributed according to £ with the approximation ‘improving’ as
n increases (see Smith & Gelfand 1992). Note that this procedure is a variant of the
by now familiar bootstrap resampling procedure. The usual bootstrap provides
equally likely resampling of the 6,, while here we have weighted resampling with
weights determined by the ratio of f to g. See, also, Rubin (1988), who refers to this
procedure as SIR (sampling/importance resampling).

Several obvious uses of this sampling-resampling perspective are immediate. In
general, the translation from functions to samples provides a wealth of opportunities
for creative exploration of bayesian ideas and calculations in the setting of computer
graphical and exploratory data analysis tools. Also, we can easily approach problems
of sensitivity of inferences to model specification, such as: How does the posterior
change if we change the prior? How does the posterior change if we change the
likelihood *

In the density function/numerical integration setting, such sensitivity studies are
rather off-putting, in that each change of a functional input typically requires one to
carry out new calculations from scratch. This is not the case with the sampling—
resampling approach, as we now illustrate in relation to the questions posed above.

In comparing two models in relation to the second question, we note that change
in likelihood may arise in terms of (i) change in distributional specification with
retaining the same interpretation, e.g. a location; (ii) change in data to a larger data-
set (prediction), a smaller data set (diagnostics), or a different data-set (validation).

To unify notation, we shall in either case denote two likelihoods by /,(6) and 7,(6).
We denote two different priors to be compared in relation to the first question by
p,(0) and p,(0). For complete generality, we consider changes to both [ and p,
although in any particular application we would not typically change both. Denoting
the corresponding posterior densities by D1(0), ]32(0), we easily see that

Py(0) o [l 0)/1,(0) p1(0)] 1(0). (4.2)

Letting v(0) = 0)/1,(0 , We may dlreet]y apply the weighted bootstrap
method to (4.2) takmg g pl(ﬁ) f (H)pl(()) and w, = v(0,). Resampled 6* will then
be approximately distributed according to f standardized, which is precisely 7,(6).

5. Overview
(a) Analytic against numerical integration procedures

Of the analytic approximation techniques available, those based on the Laplace
approximation (§2c¢) seem to be the most systematically studied and validated. The
choice between these and numerical integration procedures rests largely on the
dimensionality and complexity of the problem. As the latter becomes greater,
implementation of the analytic techniques becomes very difficult indeed.

(b) Quadrature against Monte Carlo integration

Here again, dimensionality and complexity of the posterior functional forms are
the main determining factors. Roughly speaking, for relatively well-behaved
functions (typically following reparametrization) product rules can be effective in up
to about six dimensions, with spherical rules extending the domain of quadrature up
to nine dimensions. However, beyond that (or even for lower-dimensional problems
with badly behaved functions or awkward parameter constraints) Monte Carlo
methods are generally necessary.

Phil. Trans. R. Soc. Lond. A (1991)
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(¢) Importance sampling agoinst iterative < piliny

Use of importance sampling for high-dimensional problems is something of an art
form, both in the choice of effective importance sampling functions and in the design
of variance reduction sampling strategies. However, if a good procedure can be
found, it is likely to be computationally more efficient than a Markov chain based
iterative sampling procedure. On the other hand, the latter, and, in particular, the
Gibbs sampler, has the merit of being (typically) very easy to implement, requiring
very little numerical or stochastic simulation expertise. Moreover, in very complex
problems it may simply prove too difficult to identify any suitable importance
sampling strategy.

To give a concrete sense of the different ‘flavour’ of the two approaches, we return
briefly to the mixture analysis problem of §1b.

Shaw (1988c¢) provides a detailed analysis for a k(=35) component univariate
normal mixture model for fish lengths. Lengths are binned into n class ranges,
resulting in N; fish assigned to class j, corresponding to the interval [x;,z;,,), with
N,+...+N,=N. If (u;,0,p;) denote the k component means, variances and
proportions, it is easy to see that the log-likelihood is given by

S N, Inf,—Nin (F,,,—F),

j=1

k
where ¥, =3 p, ®(x;—u)/ o],
=1

A

and ﬁ =F, +1—F’j (with @(-) denoting the standard normal cumulative distribution
function). This log-likelihood is then combined with a prior specification for the
3k—1 (= 14) unknown parameters, the prior chosen to reflect basic information
about fish growth, variability and abundance in five successive cohorts. In particular,
such knowledge constrains all parameters to be positive, the means to be increasing
and the proportions to lie in the simplex. This is a case where parameter
transformation is vital and Shaw worked with

0,=p,—11 (for numerical stability),
03i—2=ln (/’(’2_/’6@—1) (7‘= 27'-‘7k)7
03i—l=ln0-i (7’.217"-7]6)7

O, = ln[pi/(l— > pj)] (i=1,....k—1).
j=1

A detailed exploration and summary of the resulting 14-dimensional posterior
density for the fs was accomplished with a quasi-random spherical rule (as described
at the end of the §3), using 10000 nodes on two spherical shells. Further details are
given in Shaw (1988¢). The point to note in the context of the present discussion is
that the posterior full conditionals for each of the 14 parameters (i.e. for each
parameter given the values of the other 13) seem to be extremely messy forms, as a
consequence of the complicated form of the log-likelihood, so that Gibbs sampling
looks no easier than direct numerical integration.

Phil. Trans. R. Soc. Lond. A (1991)
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Now consider the same k component normal model, but with precisely observed
(rather than grouped) observations, so that the likelihood takes the form

N k
zl—] ? i Pl — )/ o4

where ¢(-) denotes the standard normal ppF. A surprisingly simple structure for the
Gibbs sampler can be obtained by introducing, as further unknowns, indicator

quantities Z,, ..., Zy, such that Z, = i corresponds to observation z; actually coming
from component ¢. In this case, if (u;,0;) are assigned conjugate normal-inverse-
gamma priors, (p,,...,p,) a Dirichlet prior and the Z, uniform priors, it is easy to

show that successive generation from the full conditionals reduces to: draw the Zs
from a specified discrete distribution; the ps from a Dirichlet distribution; the us
from a normal distribution and the os from an inverse gamma distribution.
Substantial iterative computation is then required, but the need for sophisticated
numerical understanding on the part of the statistical analyst is obviated.

Much of the author’s work reviewed here was supported by the SERC’s Complex Stochastic
Systems Initiative.
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